希腊特殊符号大全及含义(希腊字母η的含义有哪些)
本文目录
- 希腊字母η的含义有哪些
- 希腊字母的三个符号分别代表什么意思
- 希腊字母θ代表什么
- 希腊字母代表的含义
- 求所有希腊字母及其数学上代表的意义
- 希腊字母表中各个字母所代表的含义是什么
- 希腊字母代表什么意思
- 希腊字母哪几个是数学符号
希腊字母η的含义有哪些
η 伊塔 eta 磁滞系数;效率(小写)
α 阿尔法 alpha 角度;系数
β 贝塔 beta 磁通系数;角度;系数
γ 伽玛 gamma 电导系数(小写)
δ 德尔塔 delta 变动;屈光度;方程判别式(大写);允许误差(小写,统计学
ε 伊普西隆 epsilon 对数之基数
ζ 泽塔 zeta 系数;方位角;阻抗;相对粘度;原子序数
扩展资料
希腊字母是希腊语所使用的字母,也广泛使用于数学、物理、生物、化学、天文等学科。
希腊字母跟英文字母、俄文字母类似,只是符号不同,标音的性质是一样的。
希腊字母是世界上最早有元音的字母。
俄语、乌克兰语等使用的西里尔字母和格鲁吉亚语字母都是由希腊字母发展而来,学过俄文的人使用希腊字母会觉得似曾相识。
希腊字母进入了许多语言的词汇中,如 Delta(三角洲)这个国际语汇就来自希腊字母Δ,因为Δ是三角形。
希腊字母的来源:
希腊字母源于腓尼基字母,腓尼基字母只有辅音,从右向左写,希腊语言元音发达,希腊人增添了元音字母。
因为希腊人的书写工具是蜡板,有时前一行从右向左写完后顺势就从左向右写,变成所谓 “耕地”式书写,后来逐渐演变成全部从左向右写。
字母的方向也颠倒了。罗马人引进希腊字母,略微改变变为拉丁字母,在世界广为流行。
希腊字母广泛应用到学术领域,如数学等。西里尔字母也是由希腊字母演变而成。英语单词 alphabet(字母) ,源自通俗拉丁语alphabetum,alphabetum 又源自希腊语αλφαβητον (音译beton) ,即为前两个希腊字母 α(Alpha)及 β(Beta)所合成。
希腊字母的三个符号分别代表什么意思
α(阿尔法)、β(贝塔)、γ(伽马)。
阿尔法,alpha,即α,是希腊字母表的第一个字母,有第一个、开端、最初的含义。在字母解释法中,ALPHA 为字母A。
希腊字母β,Beta(大写Β,小写β),是第二个希腊字母。在古希腊语,beta读作。
Gamma(大写Γ,小写γ),是希腊字母的第三个。
起源
希腊字母源于腓尼基字母,腓尼基字母只有辅音,从右向左写,希腊语言元音发达,希腊人增添了元音字母。因为希腊人的书写工具是腊板,有时前一行从右向左写完后顺势就从左向右写,变成所谓“耕地”式书写,后来逐渐演变成全部从左向右写。字母的方向也颠倒了。
罗马人引进希腊字母,略微改变变为拉丁字母,在世界广为流行。希腊字母广泛应用到学术领域,如数学等。基里尔字母也是由希腊字母演变而成。英语单字alphabet(字母),源自通俗拉丁语Alphabetum,即为前两个希腊字母α(alpha)及β(beta)所合成。
希腊字母θ代表什么
θ 希腊字母西塔ΘTheta(大写Θ,小写θ),在希腊语中,是第八个希腊字母。大写的Θ是:粒子物理学中pentaquark用Θ+来表示小写的θ是:数学上常代表平面的角国际音标中的无声齿摩擦音西里尔字母的 Ѳ 是从 Theta 变来。
θ代表:在几何学中的角在球坐标系或圆柱坐标系中,x轴与xy平面的角在热力学中的位温工程学以θ代表平均故障间隔土壤含水量德拜温度Θ函数
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
Α α:阿尔法 Alpha Β β:贝塔 Beta Γ γ:伽玛 Gamma Δ δ:德尔塔 Delte Ε ε:艾普西龙 Epsilon Ζ ζ :捷塔 Zeta Ε η:依塔 Eta Θ θ:西塔 Theta Ι ι:艾欧塔 Iota Κ κ:喀帕 Kappa ∧ λ:拉姆达 Lambda Μ μ:缪 Mu Ν ν:拗 Nu Ξ ξ:克西 Xi Ο ο:欧麦克轮 Omicron ∏ π:派 Pi Ρ ρ:柔 Rho ∑ σ:西格玛 Sigma Τ τ:套 Tau Υ υ:宇普西龙 Upsilon Φ φ:fai Phi Χ χ:器 Chi Ψ ψ:普赛 Psi Ω ω:欧米伽 Omega
1发展历程
例如加号曾经有好几种,目前通用“+”号。 数学符号“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家 塔塔里亚用 意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作 减号。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家 莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示 相乘。这个符号在现代已应用到 集合论中了。
到了十八世纪,美国数学家欧德莱确定,把 “×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示 除或 比,另外有人用“-”(除线)表示除。后来 瑞士数学家 拉哈在他所著的《 代数学》里,才根据群众创造,正式将“÷”作为 除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家 笛卡儿在他的《 几何学》中,第一次用 “√”表示 根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。
十六世纪法国数学家维叶特用 “=”表示两个量的差别。可是英国 牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家 韦达在 菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国 莱布尼茨广泛使用了“=”号,他还在几何学中用 “∽”表示 相似,用 “≌”表示 全等。
大于号 “》”和小于号 “《”,是1631年英国著名 代数学家赫锐奥特创用。至于 “≥”、“≤”、“≠”这三个符号的出现,是很晚很晚的事了。 大括号 “{}”和 中括号 “”是代数创始人之一魏治德创造的。
任意号(全称量词)∀来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置。同样,存在号(存在量词)∃来源于exist一词中E的反写。
2符号种类
数量符号
数学符号如:i,
,a,x,e,π。详见下。
运算符号
如 加号(+), 减号(-), 乘号(×或·), 除号(÷或/),两个 集合的 并集(∪), 交集(∩), 根号(√ ̄), 对数(log,lg,ln,lb), 比(:), 绝对值符号| |, 微分(d),积分(∫),闭合曲面(曲线) 积分(∮)等。
关系符号
如“=”是 等号,“≈”是近似符号(即 约等于),“≠”是 不等号,“》”是 大于符号,“《”是 小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是 正比例符号(表示 反比例时可以利用 倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能 整除”(例如 a| b 表示“ a能整除b”,而
||b表示r是a恰能整除b的最大幂次), x,y等任何字母都可以代表 未知数。
结合符号
如小 括号“()”, 中括号“”, 大括号“{ }”,横线“—”,比如
。
性质符号
如 正号“+”, 负号“-”, 正负号“
”(以及与之对应使用的负正号“
”)
省略符号
如 三角形(△),直角三角形( Rt△), 正弦( sin)(见 三角函数),
数学符号
双曲正弦函数( sinh), x的 函数( f(x)), 极限( lim), 角(∠),
∵ 因为(一个脚站着的,站不住)
∴ 所以(两个脚站着的,能站住)(口诀:因为站不住,所以两个点;因为上面两个点,所以下面两个点)
总和,连加: ∑,求积,连乘: ∏,从n个元素中取出r个元素所有不同的 组合数
( n元素的总个数; r参与选择的元素个数), 幂
等。
排列组合符号
C 组合数
A (或P) 排列数
n 元素的总个数
r 参与选择的元素个数
! 阶乘,如5!=5×4×3×2×1=120,规定0!=1
!! 半阶乘(又称 双阶乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840
离散数学符号
∀ 全称量词
∃ 存在量词
├ 断定符(公式在 L中可证)
╞ 满足符(公式在 E上有效,公式在 E上可满足)
﹁ 命题的“非”运算,如 命题的否定为﹁ p
∧ 命题的“ 合取”(“ 与”)运算
∨ 命题的“ 析取”(“ 或”,“可兼或”)运算
→ 命题的“条件”运算
命题的“双条件”运算的
p《=》 q 命题 p与 q的 等价关系
p=》 q 命题 p与 q的 蕴涵关系(p是q的 充分条件,q是p的 必要条件)
A* 公式 A的对偶公式,或表示A的 数论倒数(此时亦可写为
)
wff 合式公式
iff 当且仅当
↑ 命题的“ 与非” 运算( “ 与非门” )
↓ 命题的“ 或非”运算( “ 或非门” )
□ 模态词“必然”
◇ 模态词“可能”
∅ 空集
∈ 属于(如" A∈ B",即“ A属于 B”)
∉ 不属于
P( A) 集合 A的 幂集
| A| 集合 A的点数
R²=R○R 关系R的“复合”
ℵ Aleph,阿列夫
⊆ 包含
⊂(或⫋) 真包含
另外,还有相应的⊄,⊈,⊉等
∪ 集合的并运算
U(P)表示P的领域
∩ 集合的交运算
-或\ 集合的差运算
〡 限制
集合关于关系 R的 等价类
A/ R 集合 A上关于 R的 商集
元素 a产生的 循环群
I环,理想
Z/( n) 模 n的 同余类集合
r( R) 关系 R的自反 闭包
s( R) 关系 R的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则( 存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则( 全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的 定义域(前域)
ranf 函数 的 值域
f: x→ y f是 x到 y的 函数
( x, y) x与 y的 最大公约数,有时为避免混淆,使用 ***(x,y)
x与 y的 最小公倍数,有时为避免混淆,使用 lcm(x,y)
aH( Ha) H关于 a的左(右) 陪集
Ker( f) 同态映射 f的核(或称 f同态核)
1到 n的 整数集合
d( A, B),| AB|,或 AB 点 A与点 B间的距离
d( V) 点 V的 度数
G=( V, E) 点集为 V,边集为 E的图 G
W( G) 图 G的 连通分支数
k( G) 图 G的点 连通度
Δ( G) 图 G的最大点度
A( G) 图 G的 邻接矩阵
P(G) 图 G的 可达矩阵
M( G) 图 G的 关联矩阵
C 复数集
I 虚数集
N 自然数集,非负整数集(包含元素"0")
N*( N +) 正自然数集,正整数集(其中*表示从集合中去掉元素“0”,如 R*表示非零实数)
P 素数( 质数)集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
C Rng 交换环范畴
R-mod 环 R的左模范畴
mod- R 环 R的右模范畴
Field 域范畴
Poset 偏序集范畴
希腊字母代表的含义
1 Α α alpha a:lf 阿尔法 角度;系数 2 Β β beta bet 贝塔 磁通系数;角度;系数 3 Γ γ gamma ga:m 伽马 电导系数(小写) 4 Δ δ delta delt 德尔塔 变动;密度;屈光度 5 Ε ε epsilon ep`silon 伊普西龙 对数之基数 6 Ζ ζ zeta zat 截塔 系数;方位角;阻抗;相对粘度;原子序数 7 Η η eta eit 艾塔 磁滞系数;效率(小写) 8 Θ θ thet θit 西塔 温度;相位角 9 Ι ι iot aiot 约塔 微小,一点儿 10 Κ κ kappa kap 卡帕 介质常数 11 ∧ λ lambda lambd 兰布达 波长(小写);体积 12 Μ μ mu mju 缪 磁导系数;微(千分之一);放大因数(小写) 13 Ν ν nu nju 纽 磁阻系数 14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克戎 16 ∏ π pi pai 派 圆周率=圆周÷直径=3.1416 17 Ρ ρ rho rou 肉 电阻系数(小写) 18 ∑ σ sigma `sigma 西格马 总和(大写),表面密度;跨导(小写) 19 Τ τ tau tau 套 时间常数 20 Υ υ upsilon jup`silon 宇普西龙 位移 21 Φ φ phi fai 佛爱 磁通;角 22 Χ χ chi phai 西 23 Ψ ψe68a84e799bee5baa631333231383362 psi psai 普西 角速;介质电通量(静电力线);角 24 Ω ω omega o`miga 欧米伽 欧姆(大写);角速(小写);角 希腊字母读法 Αα:阿尔法 Alpha Ββ:贝塔 Beta Γγ:伽玛 Gamma Δδ:德尔塔 Delte Εε:艾普西龙 Epsilon ζ :捷塔 Zeta Ζη:依塔 Eta Θθ:西塔 Theta Ιι:艾欧塔 Iota Κκ:喀帕 Kappa ∧λ:拉姆达 Lambda Μμ:缪 Mu Νν:拗 Nu Ξξ:克西 Xi Οο:欧麦克轮 Omicron ∏π:派 Pi Ρρ:柔 Rho ∑σ:西格玛 Sigma Ττ:套 Tau Υυ:宇普西龙 Upsilon Φφ:fai Phi Χχ:器 Chi Ψψ:普赛 Psi Ωω:欧米伽 Omega
求所有希腊字母及其数学上代表的意义
ω:在三角函数中表示变数角x的系数,如y=sin(ωx+ψ),t=2π/|ω|。∏:在代数中是求积符号.。∑:在代数中是求和符号.。(请对照理解)π:圆周率。立体几何表示平面。λ:在代数中表示常数。在解析几何中表示定比系数或待定系数。ψ,ψ:角,辅助角。ε:在微积分的极限定义中表示充分小的正数。η:同λ。φ,φ:角,辅助角。
希腊字母表中各个字母所代表的含义是什么
1、 Α α alpha a:lf 阿尔法
2 、Β β beta bet 贝塔
3、 Γ γ gamma ga:m 伽马
4 、Δ δ delta delt 德尔塔
5 、Ε ε epsilon ep`silon 伊普西龙
6、 Ζ ζ zeta zat 截塔
7、 Η η eta eit 艾塔
8、 Θ θ thet θit 西塔
9、 Ι ι iot aiot 约塔
10 、Κ κ kappa kap 卡帕
11 、∧ λ lambda lambd 兰布达 兰姆达
12 、Μ μ mu mju 缪
13 、Ν ν nu nju 纽
14 、Ξ ξ xi ksi 克西
15 、Ο ο omicron omik`ron 奥密克戎
16 、∏ π pi pai 派
17 、Ρ ρ rho rou 肉
18 、∑ σ sigma `sigma 西格马
19 、Τ τ tau tau 套
20 、Υ υ upsilon jup`silon 宇普西龙
21 、Φ φ phi fai 佛爱
22 、Χ χ chi phai 西
23 、Ψ ψ psi psai 普西
24 、Ω ω omega o`miga 欧米伽
历史来源
希腊字母源于腓尼基字母,腓尼基字母只有辅音,从右向左写,希腊语言元音发达,希腊人增添了元音字母。因为希腊人
的书写工具是蜡板,有时前一行从右向左写完后顺势就从左向右写,变成所谓 “耕地”式书写,后来逐渐演变成全部从左向右写。字母的方向也颠倒了。罗马人引进希腊字母,略微改变变为拉丁字母,在世界广为流行。希腊字母广泛应用到学术领域,如数学等。
西里尔字母也是由希腊字母演变而成。英语单词 alphabet(字母) ,源自通俗拉丁语alphabetum,alphabetum 又源自希腊语αλφαβητον (音译beton) ,即为前两个希腊字母 α(Alpha)及 β(Beta)所合成。
希腊字母对希腊文明乃至西方文化影响深远。《新约》里,神说:“我是阿尔法,我是欧米伽,我是首先的,我是最后的,我是初,我是终。”(圣经启示录22:13)。在希腊字母表里,第一个字母是 “Α,α ”(Alpha),代表开始,最后一个字母是 “Ω, ω” 欧米伽(Omega),代表终了。这正是《新约》用希腊语写作的痕迹。
希腊字母代表什么意思
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个。数学符号种类:1,数量符号2,预算符号3,关系符号4,结合符号5,性质符号6,省略符号7,排列组合符号8,离散数学符号9,希腊字母α,β,γ,δ,ε,λ,ζ,η,θ,ξ,σ,φ,ψ,ω都是希腊字母。希腊字母的发音及常用意义:希腊字母 读音 常用意义α 阿尔法 角度,系数,角加速度,第一个β 贝塔/毕塔 磁通系数,角度,系数γ 伽玛/甘玛 电导系数,角度,比热容比δ 得尔塔/岱欧塔 变化量,化学反应中的加热,屈光度,一元二次方程 中的判别式ε 埃普西龙 对数之基数,介电常数ζ 泽塔 系数,方位角,阻抗,相对黏度η 伊塔/诶塔 迟滞系数,效率θ 西塔 温度,角度ι 埃欧塔 微小,一点 κ 堪帕 介质常数,绝热指数λ 兰姆达 波长,体积,导热系数μ 谬/穆 磁导系数,微,动摩擦系(因)数,流体动力黏 度,微(千分之一),放大因数(小写)ν 拗/奴 磁阻系数,流体运动粘度,光子频率,化学计量数ξ 可西/赛 随机变量,(小)区间内的一个未知特定值ο 欧(阿~)米可荣 高阶无穷小函数π 派 圆周率=圆周÷直径ρ 柔/若 电阻系数,柱坐标和极坐标中的极径,密度σ,ς 西格玛 总和,表面密度,跨导,正应力τ 套/驼 时间常数,切应力,2π(两倍圆周率)υ 宇(阿~)普西龙 位移φ 弗爱/弗忆 磁通,辅助角,透镜焦度,热流量χ 凯/柯义 统计学中有卡方(χ^2)分布ψ 赛/普赛/普西 角速,介质电通量,ψ函数ω 欧米伽/欧枚嘎 欧姆,角速度,交流电的电角度,化学中的质量 分数 希腊字母是希腊语所使用的字母,也广泛使用于数学、物理、生物、天文等学科。希腊字母是世界上最早有元音的字母。俄语、乌克兰语等使用的西里尔字母和格鲁吉亚语字母都是由希腊字母发展而来。
希腊字母哪几个是数学符号
α(阿尔法),β(贝塔),γ(伽马),△(德尔塔)。
(1)α(希腊字母)Alpha(大写Α,小写α,中文音译:阿尔法、阿拉法),是第1个希腊字母。
(2)字母β,Beta(大写Β,小写β),是第二个希腊字母。在古希腊语,beta读作。
(3)γ(γ(希腊字母Γ小写))有机化学中,γ表示有机分子的碳链上,离开主官能团的的第三个碳原子上连有另一个官能团。
(4)△德尔塔,常用来判断一元二次方程的根的个数。
扩展资料:
其他希腊字母:
(1)Ε ε:艾普西龙 Epsilon
(2)Ζ ζ :捷塔 Zeta
(3)Ε η:依塔 Eta
(4)Θ θ:西塔 Theta
(5)Ι ι:艾欧塔 Iota
(6)Κ κ:喀帕 Kappa
(7)∧ λ:拉姆达 Lambda
(8)Μ μ:缪 Mu
(9)Ν ν:拗 Nu
更多文章:

运动会作文点面结合500字六年级(用点面结合的方法写运动会)
2024年5月28日 01:20

运动会加油稿100米运动员(作文素材:致100米运动员-运动会加油稿)
2024年6月14日 05:55

艾斯普瑞是什么牌子(有人知道有个牌子的衣服叫express急啊~哪里有卖)
2025年9月6日 18:15

健身补剂原料能喝吗(本人健身刚入门,请问健身要吃乳清蛋白粉吗)
2025年7月14日 08:10