哥德堡七桥问题(哥底斯堡七桥问题是一种怎样的问题)
本文目录
- 哥底斯堡七桥问题是一种怎样的问题
- “哥尼斯堡七桥问题”的详细内容
- 请问哥尼斯堡七桥问题是什么请详解
- 数学名题之哥尼斯堡七桥问题
- 哥尼斯堡七桥问题是什么
- 哥尼斯堡七桥猜想是什么
- 哥尼斯堡七桥问题的解法
- 著名的“七桥”问题,是谁提出的
- 哥德堡七桥为什么不能一次走完
- 哥斯堡的七桥问题
哥底斯堡七桥问题是一种怎样的问题
七桥问题 开放分类: 数学、拓扑学、欧拉、世界难题 七桥问题Seven Bridges Problem著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。当Euler在1736年访问Konig**erg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konig**erg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 後来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 此题被人教版小学数学第十二册书收录.在95页.
“哥尼斯堡七桥问题”的详细内容
18世纪德国哥德堡有一条河,河中有两个岛,两岸于两岛间架有七座桥。问题是:一个人怎样走才可以不重复的走遍七座桥而回到原地。 这个问题好像与数学关系不大,它是几何问题,但不是关于长度、角度的欧氏几何。很多人都失败了,欧拉以敏锐的数学家眼光,猜想这个问题可能无解(这是合情推理)。然后他以高度的抽象能力,把问题变成了一个“一笔画”问题,能否从一个点出发不离开纸面地画出所有的连线,使笔仍回到原来出发的地方。以下开始演绎分析,一笔画的要求使得图形有这样的特征:除起点与终点外,一笔画问题中线路的交岔点处,有一条线进就一定有一条线出,故在交岔点处汇合的曲线必为偶数条。七桥问题中,有四个交叉点处都交汇了奇数条曲线,故此问题不可解。欧拉还进一步证明了:一个连通的无向图,具有通过这个图中的每一条边一次且仅一次的路,当且仅当它的奇数次顶点的个数为0或为2。这是他为数学的一个新分枝――图论所作的奠基性工作,后人称此为欧拉定理。
请问哥尼斯堡七桥问题是什么请详解
七桥问题出现在十八世纪, 欧洲布勒格尔河的两条支流在哥尼斯交会,然后横贯全城,流入大海.河心有一个小岛.河水把城市分成了4块,于是,人们建造了7座各具特色的桥,把哥尼斯堡连成一体. 有人提出一个有趣的问题: 谁能够一次走遍所有的7座桥,而且每座桥都只通过一次? 这就是著名的七桥问题. 这个问题其实就是一个一笔画的问题,当时的著名数学家欧拉研究了这个问题.并解决了这个问题.答案是:不可能!因为他有四个奇数交点,一笔画只能解决两个奇数交点. 这个问题引起了一个新的数学分支的产生---拓扑学.,2,18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这 座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的 中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。 每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一 个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐...,2,请问哥尼斯堡七桥问题是什么?请详解 RT
数学名题之哥尼斯堡七桥问题
七桥问题也困绕着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧拉写了一封信,请他帮助解决这个问题。欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七座桥表示成七条线。这样,原来的七桥问题就抽象概括成了如下的关系图:这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即:能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来了。接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”。见下图:欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经过七座桥,但每座桥只走一次的路线是不可能的。有名的“哥尼斯堡七桥问题”就这样被欧拉解决了。在这里,我们可以看到欧拉解决这个问题的关键就是把“七桥问题”变成了一个“一笔画”问题,那么,欧拉又是怎样完成这一转变的呢?他把岛、半岛和陆地的具体属性舍去,而仅仅留下与问题有关的东西,这就是四个几何上的“点”;他再把桥的具体属性排除,仅留下一条几何上的“线”,然后,把“点”与“线”结合起来,这样就实现了从客观事物到图形的转变。我们把得到“点”和“线”的思维方法叫做抽象,把由“点”和“线”结合成图形的思维方法叫做概括。所谓抽象就是从客观事物中排除非本质属性,透过现象抽出本质属性的思维方法。概括就是将个别事物的本质属性结合起来的思维方法。
哥尼斯堡七桥问题是什么
18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来。
七桥问题
有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如果是奇数条,就称为奇点;如果是偶数条,就称为偶点。要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端。因此任何图能一笔画成,奇点要么没有,要么在两端)
数学家欧拉解决了此问题
哥尼斯堡七桥猜想是什么
18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。
欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。
扩展资料:
1736年29岁的欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文,在解答问题的同时,开创了数学的一个新的分支——图论与几何拓扑,也由此展开了数学史上的新历程。
七桥问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为“欧拉定理F”。
推断方法
当欧拉在1736年访问普鲁士的哥尼斯堡(现俄罗斯加里宁格勒)时,他发现当地的市民正从事一项非常有趣的消遣活动。哥尼斯堡城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
欧拉把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。
所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
参考资料来源:百度百科-七桥问题
哥尼斯堡七桥问题的解法
如果每座桥只能走一次,那么除了起点以外,当一个人由一座桥走到一块陆地时,这个人必须从另外一座桥离开这块陆地。那么对每块陆地来说,有一座进入的桥就应该对应一座离开的桥。那么在每一块陆地连接的桥数应该为偶数。
但七桥连出来是奇数,所以一个人不能一次走完七座桥。欧拉终于证明了他的结论。
扩展资料:
欧拉的考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用图中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案。
著名的“七桥”问题,是谁提出的
歌德斯堡七桥问题 18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这 座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的 中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。 每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一 个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼 斯堡七桥问题。”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的 问题,没有一个人能符合要求地从七座桥上走一遍。这个问题后来竟变得神乎其神,说 是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。 七桥问题也困扰着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧 拉写了一封信,请他帮助解决这个问题。 欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地 点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七 座桥表示成七条线。这样,原来的七桥问题就抽象概括成了如下的关系图: 这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即 :能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来 了。接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点 重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出 现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条 弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称 为“偶点”。如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不 能实现,这样的点又叫做“奇点”。见下图: 欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是 仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连 接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经 过七座桥,但每座桥只走一次的路线是不可能的。 有名的“哥尼斯堡七桥问题”就这样被欧拉解决了。 在这里,我们可以看到欧拉解决这个问题的关键就是把“七桥问题”变成了一个“一笔 画”问题,那么,欧拉又是怎样完成这一转变的呢? 他把岛、半岛和陆地的具体属性舍去,而仅仅留下与问题有关的东西,这就是四个几何 上的“点”;他再把桥的具体属性排除,仅留下一条几何上的“线”,然后,把“点” 与“线”结合起来,这样就实现了从客观事物到图形的转变。我们把得到“点”和“线 ”的思维方法叫做抽象,把由“点”和“线”结合成图形的思维方法叫做概括。所谓抽 象就是从客观事物中排除非本质属性,透过现象抽出本质属性的思维方法。概括就是将 个别事物的本质属性结合起来的思维方法
哥德堡七桥为什么不能一次走完
欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。 有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。
哥斯堡的七桥问题
七桥问题Seven Bridges Problem 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konig**erg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konig**erg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
更多文章:

台球比赛视频2018中式八球赛(中式八球大师赛的正确摆放方法是什么)
2024年7月23日 16:30

南安普敦到根西岛航线图(这艘豪华游轮从南安普敦到根西岛这条航线怎么修改病句)
2024年10月20日 21:35

今晚世界杯决赛预测(加拿大世界杯女子十米跳单人决赛在那个台转播)
2025年7月8日 15:25

霹雳舞成巴黎奥运会正式项目(霹雳舞成巴黎奥运会正式项目,你怎么看待霹雳舞的入选)
2024年2月22日 06:40

世界足球联赛级别(各国的足球联赛都有什么级别,哪些是对等的)
2025年6月13日 08:00

湖人的布拉德利去哪了(勇士裁掉前湖人悍将布拉德利,谁将顶替他在赛场上的位置)
2025年5月8日 01:30

nba夏季联赛是怎么回事(不懂就问,夏季联赛和季前赛有什么区别)
2024年9月9日 03:11