卢卡斯数列与炒股(卢卡斯数列的有关资料)
本文目录
- 卢卡斯数列的有关资料
- 卢卡斯数列通项公式
- 斐波那契数列、卡特兰数列、汉诺塔数列
- 斐波那契—卢卡斯数列的黄金阵列
- 卢卡斯数列的基本概述
- 世界上著名的数列有哪些
- 什么是鲁卡撕序列
- 卢卡斯模型在股票中怎么用
- 卢卡斯数列的介绍
卢卡斯数列的有关资料
卢卡斯数列 (Lucas Sequence) 和费波拿契数列 (Fibonnacci Sequence) 有莫大的关系。故本人在介绍费波拿契数以後也得为卢卡斯数列多添一章。 先定义整数 P 和 Q 使 D = P2 - 4Q 》 0, 从而得一方程 x2 - Px + Q = 0,其根为 a, b, 现定义卢卡斯数列为: Un(P,Q) = (an - bn) / (a-b) 及 Vn(P,Q) = an + bn 其中n 为非负整数,得 U0(P,Q) = 0、 U1(P,Q) = 1 、 V0(P,Q) = 2 、 V1(P,Q) = P、...... 我们有下列和卢卡斯数列相关的恒等式: Um+n = UmVn - anbnUm-n 、 Vm+n = VmVn - anbnVm-n Um+1 = P*Um - Q*Um-1 、 Vm+1 = P*Vm - Q*Vm-1 (取 n = 1) U2n = UnVn 、 V2n = Vn2 - Qn U2n+1 = Un+1Vn - Qn 、 V2n+1 = Vn+1Vn - PQn 若取(P,Q) = (1,-1),我们便有 Un 为费波拿契数, 即0、 1、 1、 2、 3、 5、 8、 13、 21、 34、 55、 89、 144、 233、 377、 610、 987、 1597、 2584、 4141、 6765等。 而Vn 为卢卡斯数 (Lucas Number), 即2、 1、 3、 4、 7、 11、18、 29、 47、 76、 123、 199、 322、 521、 843、 1364、 2207、 3571、 5781、 9349 等。 若取(P,Q) = (2,-1),我们便有 Un 为佩尔数 (Pell Number), 即0、 1、 2、 5、 12、 29、 70、 169、 408、 985、 2378、 5741等。 而Vn 为佩尔 - 卢卡斯数 (Pell - Lucas Number) (详见另文《佩尔数列》), 即2、 2、 6、 14、 34、 82、 198、 478、 1154、 2786、 6726等。 此等全都是数学界很有名的数列。 卢卡斯数的性质 卢卡斯数 (简记 Ln) 有很多性质和费波拿契数很相似。如 Ln = Ln-1 + Ln-2,其中不同的是 L1 = 1、 L2 = 3。 所以卢卡斯数有:1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...... (OEIS A000204),当中的平方数只有 1 和 4,这是由哥恩 (John H. E. Cohn) 证明的。而素数,即卢卡斯素数 (Lucas Prime) 则有: 3, 7, 11, 29, 47, ...... 。当中现在知道最大的拟素数 (Probable Prime) 为 L574219 ,此数达 120005位之多。 我们有下列和卢卡斯数相关的恒等式: Ln2 - Ln-1Ln+1 = 5 (-1)n L12 + L22 + ...... + Ln2 = LnLn+1 - 2 Lm+n = (5FmFn + LmLn) / 2 (式中的 Fn 为费波拿契数) Lm-n = (-1)n (LmLn - 5FmFn) / 2 Ln2 - 5Fn2 = 4 (-1)n 卢卡斯素数龙虎榜 n 数位 发现者 年份 56003 11704 欧文 (Sean A. Irvine) / 禾达 (Bouk de Water) 2006 51169 10694 禾达 (Bouk de Water) / 布靴斯特 (David Broadhurst)2001记得采纳啊
卢卡斯数列通项公式
卢卡斯数列是斐波那契数和卢卡斯数的推广,以法国数学家爱德华·卢卡斯命名。卢卡斯数列的通项公式为:f(n)=n先定义整数 P 和 Q ,使满足一元二次方程判断法则:△= P^2-4Q 》 0,从而得一方程x^2-Px+Q=0,其根为 a, b。卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)n 1 2 3 4 5 6 7 8 9 10 …斐波那契数列F(n) 1 1 2 3 5 8 13 21 34 55 …卢卡斯数列L(n) 1 3 4 7 11 18 29 47 76 123 …F(n)*L(n) 1 3 8 21 55 144 377 987 2584 6765 …类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。如1,4,5,9,14,23…,因为1,4开头,可记作F。斐波那契—卢卡斯数列之间的广泛联系①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。
斐波那契数列、卡特兰数列、汉诺塔数列
1、斐波拉契数列:1,1,2,3,5,8,13,21,34,55,。。。每一项都是前两项和;
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n》=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。通项公式:
注:此时:
(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。
2、卡特兰数列:又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...
卡特兰数Cn满足以下递推关系 :
3、汉诺塔数列:汉诺塔问题家传户晓,其问题背景不做详述,此处重点讲解在有3根柱子的情况下,汉诺塔问题求解的通项公式的推导。
问题背景:有A,B和C三根柱子,开始时n个大小互异的圆盘从小到大叠放在A柱上,现要将所有圆盘从A移到C,在移动过程中始终保持小盘在大盘之上。求移动盘子次数的最小值。
变量设置:n为圆盘个数,H(k)为n=k时移动盘子次数的最小值。
递推公式: H(k)=2H(k-1)+1。
通项公式:H(k)=2^k-1。
4、卢卡斯数列:4,14,194,37634,。。。每一项都是前一项的平方减二;卢卡斯数列的通项公式为 f(n)=^n
5、费马数列:3,5,17,257,65537,。。。,每一项都可表为 2^(2^n) + 1
6、大衍数列:来源于《乾坤谱》中对易传“大衍之数五十”的推论。如图:
主要用于解释中国传统文化中的太极衍生原理。数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和。是中华传统文化中隐藏着的世界数学史上第一道数列题。
0、2、4、8、12、18、24、32、40、50……
通项式:(n*n-1)÷2 (n为奇数)n*n÷2 (n为偶数)n表示该数列的某个项
7、帕多瓦数列是:1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151……
它从第四项开始,每一项都是前面2项与前面3项的和。即x=(x-2)+(x-3),x为项的序数(x》4)。
它和斐波拉契数列非常相似,稍有不同的是:每个数都是跳过它前面的那个数,并把再前面的两个数相加而得出的。
8、佩尔数列:是一个自古以来就知道的整数数列,由递推关系定义,与斐波那契数类似。佩尔数呈指数增长,增长速率与白银比的幂成正比。它出现在2的算术平方根的近似值以及三角平方数的定义中,也出现在一些组合数学的问题中。
佩尔数的数列从0和1开始,以后每一个佩尔数都是前面的数的两倍加上再前面的数。最初几个佩尔数是:
0,1,2,5,12,29,70,169, 408, 985, 2378……
斐波那契—卢卡斯数列的黄金阵列
经过对斐波那契—卢卡斯数列和黄金特征、黄金比例的研究,我把自然数排列为如下的黄金阵列: 1 2 3 5 8 13 21 34 55 89 … 4 6 10 16 26 42 68 … 7 11 18 29 47 76 … 9 15 24 39 63 … 12 19 31 50 81 … 14 23 37 60 97 … 17 28 45 73 … 20 32 52 84 … 22 36 58 94 … 25 40 65 … 27 44 71 … 30 49 79 … 33 53 86 … … 第一排,斐波那契数列,1,2,3,5,8.…第二排,最小缺4,4*1.618取整6——4,6,10,16…第三排,最小缺7,7*1.618取整11——7,11,18,29…以此类推。第1列的经验公式:的整数部分。黄金阵列具有以下性质:1)各斐波那契—卢卡斯数列都出现一次(常数数列0,0,0…除外)2)每一个同一列的数,与黄金比例之积,与整数的距离差不多。每一个数的列数,我们可乘之为该数的黄金阶数。前10个数的黄金阶数分别是1,2,3,1,4,2,1,5,1,3。前10个黄金阶数5阶或5阶以上的数分别是8,13,21,26,34,42,47,55,63,68,他们之间两两相差5或8,我们称之为真金数。黄金阶数为1的数,不是在真金数的两边(如8的两边7和9),就是在相差8的2个真金数中间(如13和21之间的17)。
卢卡斯数列的基本概述
卢卡斯数列的通项公式为 f(n)=^n先定义整数 P 和 Q ,使满足一元二次方程判断法则: △ = P^2 - 4Q 》 0,从而得一方程 x^2 - Px + Q = 0,其根为 a, b。现定义卢卡斯数列为:Un(P,Q) = (a^n - b^n) / (a-b) 及 Vn(P,Q) = a^n + b^n其中 n 为非负整数,得 U0(P,Q) = 0、 U1(P,Q) = 1 、 V0(P,Q) = 2 、 V1(P,Q) = P、......我们有下列和卢卡斯数列相关的恒等式:Um+n = UmVn - a^nb^nUm-n 、 Vm+n = VmVn - a^nb^nVm-nUm+1 = P*Um - Q*Um-1 、 Vm+1 = P*Vm - Q*Vm-1 (取 n = 1)U2n = UnVn 、 V2n = Vn2 - 2*QnU2n+1 = Un+1Vn - Qn 、 V2n+1 = Vn+1Vn - PQn若取 (P,Q) = (1,-1),我们便有 Un 为斐波那契数,即 0、 1、 1、 2、 3、 5、 8、 13、 21、 34、 55、 89、 144、 233、 377、 610、 987、 1597、 2584、 4181、 6765等。而 Vn 为卢卡斯数 (Lucas Number),即 2、 1、 3、 4、 7、 11、18、 29、 47、 76、 123、 199、 322、 521、 843、 1364、 2207、 3571、 5778、 9349 等。若取 (P,Q) = (2,-1),我们便有 Un 为佩尔数 (Pell Number),即 0、 1、 2、 5、 12、 29、 70、 169、 408、 985、 2378、 5741等。而 Vn 为佩尔 - 卢卡斯数 (Pell - Lucas Number) (详见另文《佩尔数列》),即 2、 2、 6、 14、 34、 82、 198、 478、 1154、 2786、 6726等。此等全都是数学界很有名的数列。
世界上著名的数列有哪些
1、斐波那契数列
斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。
2、递推数列
递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。
3、Look-and-say 数列
Look-and-say 数列是数学中的一种数列,它的名字就是它的推导方式:给定第一项之后,后一项是前一项的发音。
4、帕多瓦数列
帕多瓦数列是由帕多瓦总结而出的。它的特点为从第四项开始,每一项都是前面2项与前面3项的和。
5、卡特兰数
卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。
什么是鲁卡撕序列
卢卡斯序列是由法国数学家爱德华.卢卡斯(Edouard Lucas)(1842~1891)发现的。它是由斐波纳契数列派生得来的。 爱德华.安纳多.卢卡斯(Edouard Anatole Lucas)是19世纪法国数学家,以数字理论研究而闻名,卢卡斯数列就是以他的名字命名。在他利用斐波纳契数列工作时,发现了这一与斐波纳契(该数列的命名归功于他)具有密切关系的数列。卢卡斯数列与斐波纳契的定义非常相似,该数列规定除了最开始的两个数字,数列中其余数字都是前面两个数字的和。f(n)=f(n-2)+f(n-1),卢卡斯数列最开始的两个数字分别为2和1,而不是l和1。定义的差别很小,但是数列却有差别: 卢卡斯数列:2,1,3,4,7,11,18,29,47,76,123,199,322,521…… 斐波纳契数列:1,1,2,3,5,8,13,21,34,55,89,144,233,377…… 这两个数列在许多方面有相关性,对于它们之间关系的研究到今天还仍在继续。据埃文斯维尔(Evansville)大学的数学教授克拉克.金伯利(Clark Kimberling)称,将两个序列分别标记为L(0),L(1),L(2),…和F(0),F(1),F(2),那么对于所有非负的整数n来说,斐波纳契数列和卢卡斯数列存在下列关系: L(n)=F(n+2)-F(n-2);L(4n)+2=(L(2n))2;L(4n)-2=5(F(2n))2;F(n+m)+F(n-p)=F(n)L(m)。 如果m是整数,L(n-1)L(n+1)+F(n-1)F(n+1)=6(F(n))2。
卢卡斯模型在股票中怎么用
美股研究社称卢卡斯数列他们认为当预侧的变敏发生变化时,预期的形成方式也会发生变化。也就是计量经济棋m中的变及关系因为预期而发生变化.根据这样的计伦经济模皿所采取的政策.很可能是错误的。
卢卡斯数列的介绍
卢卡斯数列 (Lucas Sequence) 和斐波那契数列 (Fibonacci Sequence) 有莫大的关系。故本人在介绍斐波那契数以后也得为卢卡斯数列多添一章。
更多文章:

2014年亚运会男篮决赛(在釜山亚运会上中国男篮负于哪个队)
2024年8月25日 21:41

广州恒大降级(广州有几个足球俱乐部恒大和去年降级的广州医药是同一支球队吗)
2024年11月21日 13:31

湖人马刺战绩相同(面对不利的形势,湖人在赛季结束时应该怎么做)
2025年2月25日 21:01

匈牙利到葡萄牙的距离(匈牙利是一个位于欧洲中部的内陆国家,这个国家有哪些特色吗)
2024年6月9日 10:25